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Abstract: Persistent chemosensory dysfunction (PCD) is a common symptom of long-COVID.
Chemosensory dysfunction (CD) as well as SARS-CoV-2-specific antibody levels and CD8+ T-cell
immunity were investigated in a cohort of 44 healthcare workers up to a median of 721 days after a
positive PCR test. CD was assessed using questionnaires and psychophysical screening tests. After
721 days, 11 of 44 (25%) participants reported PCD, with five describing an impaired quality of life.
One participant reported hyperosmia (increased sense of smell). The risk of PCD at 721 days was
higher for participants reporting qualitative changes (parosmia (altered smell), dysgeusia (altered
taste), or phantosmia (hallucination of smell)) during initial infection than in those with isolated
quantitative losses during the first COVID-19 infection (62.5% vs. 7.1%). The main recovery rate
occurred within the first 100 days and did not continue until follow-up at 2 years. No correlation
was found between antibody levels and CD, but we observed a trend of a higher percentage of T-cell
responders in participants with CD. In conclusion, a significant proportion of patients suffer from
PCD and impaired quality of life 2 years after initial infection. Qualitative changes in smell or taste
during COVID-19 pose a higher risk for PCD.

Keywords: parosmia; phantosmia; dysgeusia; hyperosmia; smell; taste; SARS-CoV-2; long-COVID;
quality of life; immune response

1. Introduction

Sudden loss of taste (ageusia) and smell (anosmia) are distinctive and frequent symp-
toms of the acute phase of Coronavirus Disease 2019 (COVID-19) [1–3]. The prevalence
of self-reported chemosensory dysfunction (CD) during the illness was up to 86% for
European patients infected in 2020 and decreased to around 30% or less with the spreading
of the Omicron variant (BA1 and BA2 lineage) of Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) in 2022 [4–6].

In many cases, the patients’ function of taste and smell significantly improves within
the first weeks after symptom onset, and the prevalence of complete quantitative losses
of smell and taste drops [7–9]. In contrast, the prevalence of qualitative dysfunctions,
such as phantosmia (hallucination of smell), parosmia (alteration of smell), and dysgeusia
(alteration of taste) rises over time due to an often-delayed onset of several months [8,10–12].
Long-term observation studies commonly report that a substantial number of patients seem
not fully recovered from SARS-CoV-2-caused chemosensory dysfunction up to 24 months
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post-infection [9,10,13]. Persistent chemosensory dysfunction (PCD) is among the most
frequently reported symptoms of long-COVID [12]. COVID-19-related dysfunctions of
smell and taste, especially qualitative changes, can disrupt eating habits and severely affect
the quality of life [14–16]. In addition, PCD after COVID-19 could be an indicator of an
increased risk to develop neurodegenerative diseases [17,18]. Therefore, it is important to
learn more about the course of recovery and the long-term outcome of SARS-CoV-2-induced
dysfunction of smell and taste.

Only a few studies report on PCD two years after infection, showing varied results
with a self-reported prevalence of 11–61% [13,19–21]. Since self-reports tend to poorly
correlate and often underestimate psychophysically measured chemosensory dysfunction,
it is important to additionally apply psychophysical testing [22,23]. So far, only one other
study reports on psychophysically tested chemosensory function after two years [19].

To fill this gap this follow-up study evaluated self-reported and psychophysically
measured chemosensory function in a cohort of 44 health workers, at a median of 721 days
after the first positive SARS-CoV-2 PCR test result. Participants showed no or only mild
symptoms of COVID-19 and were not hospitalized during the illness. Participants’ results
after a median of 721 days were compared to those after a median of 100 and 244 days. An-
tibody levels and CD8+ T-cell response were measured to investigate possible correlations
between immune response and alterations in taste and smell.

2. Materials and Methods
2.1. Participants

In this follow-up study, data were obtained from 44 subjects. The cohort included
40 hospital employees, who acquired the first PCR-confirmed SARS-CoV-2 infection at
Helios Clinic Munich West in 2020. Four direct relatives, infected by their partners, were
also included in the study. All participants completed the initial substudy on olfactory
and gustatory function after the first infection with SARS-CoV-2 [11]. Participation was
voluntary and not remunerated.

Inclusion criteria were a positive RT-PCR test for SARS-CoV-2 and age 18 years or
older. Patients with olfactory or gustatory dysfunctions known prior to the onset of the
pandemic were excluded.

2.2. Study Design

This monocentric, prospective follow-up study investigated psychophysical and sub-
jective olfactory and gustatory function as well as an adaptive immune response at a median
of 721 days post first positive SARS-CoV-2 PCR test result. This study represents the second
follow-up of the study “Establishment and validation of epitope-specific SARS-CoV-2
blood-based testing methods” (EPI-SARS). In the first follow-up substudy, self-reported
and psychophysically tested olfactory and gustatory functions were evaluated at a median
of 100 and 244 days post-infection (see Figure 1). CD8+ T-cell response was analyzed after
a median of 63 days.
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Figure 1. Timeline showing the elements of the initial substudy and the follow-up study, as well as
phases of infections and reinfections in the cohort. Time points are presented as median (range) days
post first positive PCR test. Forty-four individuals were included in the study and took part until 721
days after the first infection. The Sniffin Screening 12 test was applied after 100 and 721 days, and
questionnaire Q2 after 244 and 721 days. In addition, SARS-CoV-2 specific antibody activity and CD8+

T-cell response were measured at different time points. The seven-day-incidence per 100.000 people
in Germany over the course of the study is visible on top of the timeline [19].

Interlinks with EPI-SARS as well as results, methods, and a detailed description of
T-cell response from the previous substudy are published elsewhere [11,24].

From February 2022 onwards, participants were invited to take part in the follow-up
study. Within one study visit, participants completed the Sniffin Screening 12 and Taste
stripes test, questionnaire Q2, an additional structured questionnaire concerning the quality
of life, reinfections with SARS-CoV-2 and vaccination status, and donated serum and full
blood samples. Participants who could not complete the follow-up in person were asked to
answer the questionnaires on the telephone. Study visits were scheduled as close as possible
to the two-year mark after the first positive SARS-CoV-2 RT-PCR test result. Figure 1 shows
the time points and structure of the initial substudy and follow-up study visits, as well as
phases of first infections and reinfections with SARS-CoV-2 within the cohort. As hospital
employees, the participants were screened for reinfection with SARS-CoV-2 by PCR tests
on a regular basis.

2.3. Questionnaires Q1 and Q2

The self-constructed structured questionnaires Q1 and Q2 addressed olfactory and
gustatory function at the time of the study visits as well as during acute COVID-19 infection,
retrospectively. Q1 was applied after a median of 100 days, Q2 after a median of 244 and
721 days. Both questionnaires have been previously described in detail [13].

Q1 measured self-reported smell and taste function 100 days after infection as well
as retrospectively during acute COVID-19 infection. Participants were asked if they had
experienced dysfunction in taste or smell at the beginning of the illness and if they still
noticed any changes in taste. The same questions were applied to smell. Furthermore, they
were asked if they currently noticed anything unusual in their sense of smell or taste. This
open question revealed qualitative dysfunctions in several participants which led to the
development of questionnaire Q2.

In Q2, subjects were asked to evaluate their current olfactory and gustatory function.
The answer options for taste as well as for smell were: “as before”, “changed”, “hallu-
cinatory” or “diminished”. In addition, participants were asked to describe again their
chemosensory dysfunction during their first COVID-19 episode in 2020. Changes in quality
were assessed by the questions “Were certain smells changed?” (“no”, or if “yes” was
selected, participants would describe which smells were changed and in which way), “Did
you smell anything that wasn’t there? (Did you hallucinate smell(s)?)” (“no”, or if “yes”,
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were these hallucinated smells known, unknown, pleasant, or unpleasant?). Gustatory
dysfunction during COVID-19 was assessed by the question if participants had experienced
dysfunction in taste during the acute illness (“no”, or if “yes” was selected participants
would further specify with the options “diminished”/“changed”/“hallucinated” and in
addition describe the sensation).

2.4. Questionnaire Concerning Vaccination, Reinfections with COVID-19, and Quality of Life

In an additional structured questionnaire, subjects provided their vaccination status
and positive SARS-CoV-2 PCR test dates. In cases of a PCR confirmed reinfection with
SARS-CoV-2, chemosensory function during the second, third, or fourth COVID-19 episode
was recorded using Q2. General symptoms during reinfections were also documented.
Furthermore, subjects were asked if anything was remarkable or had changed regarding
smell and taste and whether they feel that their quality of life is impaired by persistent
chemosensory dysfunction.

2.5. Sniffin’ Sticks Screening 12 Test with Taste Stripes

For psychophysical evaluation of smell and taste the validated tests Sniffin’ Sticks
Screening 12 Test with Taste stripes (Burghart Messtechnik GmbH, Holm, Germany) were
used [25,26]. These screening tests were already applied during the initial study after a
median of 100 days (Figure 1). During the follow-up study, 34 participants also completed
the Sniffin’ Sticks Extended Test.

In the Sniffin’ Screening 12 Test, odor identification is assessed for 12 common smells
with pen-like devices. Scores range from 0 to 12. Normosmia is reached by a score of 11 or
12, hyposmia by a score of 7 to 10, and anosmia by a score of 0 to 6.

To assess taste, Taste stripes with the four main taste qualities sweet, sour, bitter, and
salty were placed on the tongue. Afterward, participants noted down which quality they
perceived. A test result was considered abnormal if at least one of the four qualities was
not identified correctly.

During the psychophysical assessment of olfactory and gustatory function, partici-
pants did not receive any feedback on their answers. At the time of testing, all participants
were fully recovered from their COVID-19 infection and had already received two negative
PCR test results.

2.6. Evaluation of SARS-CoV-2 Specific Antibody Levels

SARS-CoV-2-specific IgG and neutralizing antibody (nAb) levels were evaluated using
the iFlash-SARS-CoV-2 chemiluminescence immunoassay kit (Shenzhen YHLO Biotech
Co. Ltd. (Shenzhen, China)). The assays were performed on the iFLASH immunoassay
analyzer (Shenzhen YHLO Biotech Co. Ltd. (China)) using the manufacturer’s protocol.
Spike protein and nucleocapsid protein were used for detection. The assay procedure is
described by Qian C, et al. [27]. The cutoff value for IgG was >10 AU/mL and >20 AU/mL
for neutralizing antibodies.

Additionally, IgA antibody levels, directed against nucleocapsid protein, were ana-
lyzed using the recomWell SARS-CoV-2 IgA ELISA (Mikrogen, Neuried, Germany). Ac-
cording to the manufacturer’s instructions, samples with a concentration of <20 U/mL
were assessed as negative, a concentration from 20 to 24 U/mL was counted as borderline,
and samples with a concentration of≥24 U/mL were counted as positive.

2.7. T-Cell Analysis

As described previously [11,24], peripheral blood mononuclear cells (PBMCs) were
isolated from whole blood by density centrifugation for T-cell analyses. T cells were
expanded for 12 days using peptide pool stimulation. The in-house designed peptide
pool contains diverse epitopes predicted for the most common HLA class I molecules
across various domains of the SARS-CoV-2 proteome. T-cell immunity was investigated
via intracellular cytokine release in peptide stimulation assays.



Life 2022, 12, 1556 5 of 20

2.8. Statistical Analysis

Statistical analysis was performed using R® (The R Foundation for Statistical Comput-
ing, Version 2022.07.0).

Categorical data are shown in medians, absolute and relative frequencies, with the
respective maxima and minima and the distribution of values. The Wilcoxon test was
applied to evaluate the statistical significance of differences in the Sniffin’ Screening 12 Test
score after 100 and 721 days and to investigate possible correlations between self-reported
olfactory function and the Sniffin’ Screening 12 Test score. To measure the effect size,
the eta squared (η2) test was used. The limits for the size of the effect were set with η2

0.01 for a small, η2 0.06 for a medium, and η2 0.14 for a large effect [28]. Fisher’s exact
test was applied to compare Taste stripes test results after 100 and 721 days and evaluate
correlations between self-reported gustatory function and Taste stripes test results. For
intergroup comparisons of antibody titers between participants with and without self-
reported change in chemosensory function (persistent chemosensory dysfunction after
721 days (yes/no) and chemosensory dysfunction during the first infection (yes/no), the
Wilcoxon test was applied as well. Analyses were conducted with all participants, “Group
A” (participants only infected once) and “Group B” (participants with two infections and
reinfection in 2022).

For all analyses except the eta squared test, the level of statistical significance was set
at p < 0.05.

3. Results
3.1. Cohort Characteristics

All 44 participants acquired the first PCR-confirmed SARS-CoV-2 infection at Helios
Clinic Munich West in Germany between 23 March 2020 and 10 June 2020 (median 1 April
2020). For characteristics of the cohort see Table 1. No participant was hospitalized during
the first infection or reinfections with SARS-CoV-2.

Table 1. Demographic and anamnestic information about the cohort.

Parameter Number of Participants (%)

Sample size 44 (100%)

Gender 29 F (65.9%)

Age at date of follow-up after 721 days
(median, range) 43, 24–63

Active smoker 5 (11.3%)

Number of infections with SARS-CoV-2 after
721 days

One time 24 (54.5%)

Two times 18 (40.9%)

Three times 1 (2.3%)

Four times 1 (2.3%)

Received number of vaccinations after 721 days

None 2 (4.5%)

One 2 (4.5%)

Two 7 (15.9%)

Three 33 (75.0%)

The follow-up study took place between 14 March 2022 and 10 May 2022 (median 24
March 2022). All 44 participants completed the questionnaires. Then, 40 of 44 participants
also took part in the psychophysical smell and taste screening tests and serological analysis
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of antibody levels. T-cell analysis was carried out on 37 participants. Figure 1 shows the
timeline and parts of the initial substudy and the follow-up study. If data were missing, the
participant was excluded from the corresponding analysis.

3.2. Self-Reported Chemosensory Dysfunction
3.2.1. Chemosensory Dysfunction over the Course of the Study

In total, 30 of 44 (68.2%) participants reported chemosensory dysfunction during the
first COVID-19 episode. After a median of 100 days, it was 11 of 44 (25%) and after 244 days,
14 of 44 (31.8%), which has been described in detail previously [11].

After a median of 721 days, 12 of 44 (27.3%) participants reported chemosensory
dysfunctions. One of these acquired hyposmia during reinfection with SARS-CoV-2 in
2022 (marked with “*” in Figure 2 and Table A1). The other 11 of 44 (25%) participants
had reported chemosensory dysfunctions (7 quantitative, 4 qualitative, 1 qualitative, and
quantitative) since their first infection. Figure 2 shows the participants’ development of
qualitative and quantitative changes in chemosensory function over the course of the study.
Table A1 shows the constellation of symptoms at different time points.
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Figure 2. Quantitative and qualitative alteration of taste and smell of all 44 participants over the course
of the study. Data on chemosensory dysfunction during the disease were collected retrospectively,
whereas information concerning time points “100 days” (Q1), “244 days”, and “721 days” (Q2) were
collected prospectively. (a) Development of quantitative and qualitative alterations of taste and smell
of each participant. Each slice symbolizes one participant and the respective alteration of taste and
smell during COVID-19 infection, as well as after a median of 100, 244, and 721 days. The numbers in
the outer circle represent the total number of infections with SARS-CoV-2. (b) Absolute frequencies
and percentage of qualitative and quantitative alterations of all participants during COVID-19 as well
as 100, 244, and 721 days after.

Comparing time points “244 days” and “721 days”, four participants reported the
disappearance of qualitative symptoms, in four cases qualitative symptoms gave way to
hyposmia and five participants reported persistent qualitative symptoms.

The comparison between participants with symptoms “during COVID-19” and after
“721 days” showed that 1 of the 14 (7.1%) participants with isolated quantitative losses
during the first COVID-19 episode, reported PCD (phantosmia) after 721 days. There
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were 10 of the 16 (62.5%) participants with qualitative changes (isolated or in combination
with quantitative losses) during the first COVID-19 that reported PCD after 721 days (see
Figure 2a and Table A1 for the constellation of symptoms).

3.2.2. Self-Reported Olfactory and Gustatory Dysfunction during Reinfections

Overall, 20 of 44 (45,5%) participants were reinfected with SARS-CoV-2 (see Table 1
and Figure 2a). Two of the twenty (10%) reported hyposmia during reinfection. Both
were asymptomatic regarding smell and taste during their first infection in 2020 and were
reinfected in early 2022. One participant (marked in Figure 1 and Table A1 by “*”) reported
a persistent quantitative loss after 111 days, the other had fully recovered within two
weeks. None of the participants with chemosensory dysfunction during the first COVID-19
episode reported repeated chemosensory dysfunction during reinfection.

3.2.3. Quality of Life and Taste and Smell after 721 Days

There were 5 of 44 (11.4%) participants (3 quantity only, 2 quality only) who reported
persistent chemosensory dysfunction since their first infection, and who described a result-
ing impairment of their quality of life after a median of 721 days.

3.3. Psychophysical Screening Tests after a Median of 721 and 100 Days
3.3.1. Sniffin’ Screening 12 Test

After a median of 721 days, 20 of 40 (50%) participants reached a score of 11 or 12 and
therefore normosmia. There were 19 of 40 (47.5%) participants that were within the range
of hyposmia with a score of 7 to 10, and 1 of 40 (2.5%) participants reached a score of 5
and was therefore anosmic. Overall, participants scored significantly higher in the Sniffin’
Screening 12 Test after a median of 721 days in comparison to the results after a median of
100 days (Wilcoxon p < 0.001, see Figure A1). Figure 3 shows the scores of all participants
after a median of 100 and 721 days and the change between the groups “normosmia”,
“hyposmia”, and “anosmia”.
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Figure 3. Scores of the Sniffin’ Screening 12 Test after a median of 100 and 721 days per participant
(female (white circle), male (black circle)). Field a: stayed anosmic (A) (1), field b: improved from A
to hyposmic (H) (2), field c: stayed H (15), field d: deteriorated from normosmic (N) to H (2), field e:
improved from H to N (13), field f: stayed N (7).
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3.3.2. Taste Stripes Test after 100 and 721 Days

After 721 days, 12 of 40 (30%) participants could not identify all taste qualities correctly.
After 100 days, 16 of those 40 (40%) participants could not identify all taste qualities. The
quality “salt” was not recognized in 7 cases, “sour” in 3, “bitter” in 5, and “sweet” in 2 cases.
Comparing the results after 100 and 721 days, there was no significant difference between
both time points (Fisher’s Exact p = 0.31).

3.4. Comparisons of Self-Report and Psychophysical Screening Tests after 721 Days
3.4.1. Sniffin’ Screening 12 Test Score and Self-Reported Changes in Olfactory Function

There was no significant difference in the Sniffin’ Screening 12 Test score between
participants with and without self-reported persistent olfactory dysfunction (Wilcoxon
p = 0.18) or with and without qualitative changes in smell (Wilcoxon p = 0.21). Participants
who reported a persistent quantitative loss of smell scored significantly lower in the Sniffin’
Screening 12 Test than participants without a quantitative loss (Wilcoxon p = 0.04) (See
Figure A2A–C).

In the eta squared (η2) test, self-reported persistent deficiencies in smell after a median
of 721 days showed a medium effect size on the Sniffin’ Screening 12 Test score (η2 = 0.11),
persistent quantitative loss showed a large effect on the Sniffin’ Screening 12 Test score
(η2 = 0.21), whereas self-reported qualitative changes showed a small effect size (η2 = 0.04).

3.4.2. Taste Stripes and Self-Reported Changes in Gustatory Function

There was no correlation between the results of the Taste stripes test and self-reported
gustatory dysfunction (Fisher’s Exact p = 0.17), self-reported qualitative changes in taste
(Fisher’s Exact p = 1), or self-reported quantitative losses of taste (Fisher’s Exact p = 0.07).

3.5. Self-Reported Hyperosmia after 721 Days

One participant who had reported isolated qualitative changes in taste and smell
during initial COVID-19 infection, as well as at 100 and 244 days, self-reported a newly
emerged higher sensitivity to all kinds of odors (hyperosmia), which had replaced per-
sistent parosmia, after 721 days. This participant reached a score of 9 at both time points
of psychophysical testing (after a median of 100 and 721 days), which is in the range
of hyposmia.

3.6. Immune Response and Correlation with Chemosensory Dysfunction
3.6.1. SARS-CoV-2 Specific Antibody Levels after 721 Days

Comparisons between SARS-CoV-2 specific IgG and IgA antibody levels in partici-
pants with and without symptoms of chemosensory dysfunction at the same time point or
during the first infection showed no significant difference (Figure A3A for IgG and A3B for
IgA). Almost all participants had anti-SARS-CoV nAb activity at over 800 AU/mL. No con-
nection with self-reported chemosensory dysfunction was evident. Figure A4 shows nAb
levels of all participants and their respective symptoms of smell and taste after 721 days.

3.6.2. SARS-CoV-2-Specific CD8+ T-Cell Response in Relation to Chemosensory
Dysfunctions

After a median of 63 days, 34 of 44 (77.2%) participants showed a SARS-CoV-2-specific
CD8+ T-cell response after peptide stimulation. After 721 days, 26 of 37 (70.3%) participants
showed CD8+ T-cell responses, whereas “group A” (participants with only one infection
(n = 20)) had a lower percentage of T-cell responders with 60% (12 of 20) than “group B”
(participants with two infections and reinfection in 2022 (n = 15)) with 86.7% (13 of 15)
(Figure A5).

Analyzing T-cell response in relation to self-reported chemosensory dysfunctions (CD),
we observed a trend for groups of participants reporting symptoms of smell or taste after
63 or 721 days to have a higher percentage of T-cell responders than groups of participants
without symptoms (Figure A6A,B). After 721 days, this trend was clearer in “group A”.
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4. Discussion

Our results show that a significant proportion of patients suffer from persistent changes
in olfactory and gustatory function more than one year after infection with SARS-CoV-2,
corroborating results from other studies [21,22]. Here, 11 of 44 (25%) participants reported
persistent changes in smell or taste after a median of 721 days. The few other long-term
observation reports, sampling 24 months after infection with SARS-CoV-2, show a self-
reported persistent chemosensory dysfunction (PCD) prevalence of 11–61% [13,19–21].
Most of this cohort had recovered from chemosensory dysfunction within the first 100 days
after the first positive PCR test. By then, 19 of the 30 (63.3%) participants who reported
chemosensory dysfunction during the first COVID-19 episode reported a fully restored
sense of smell and taste. Small changes were reported after a median of 244 days with
the rise of late-onset qualitative dysfunctions, as described previously [11], but there were
hardly any differences in terms of the patients affected at the follow-up visits after 244
and 721 days. Other studies describe self-reported or psychophysically measured main
recovery rates of around 71%–80% during the first 90 days after infection [29–32], with
almost no change thereafter until one year [29]. These results suggest that participants not
recovering from chemosensory dysfunctions within the first few months are more likely
to develop PCD, which has also been described by Fernandez et al. [33]. Nevertheless,
recent studies showed that late spontaneous recovery is possible after one year [20,21].
In our cohort, patients reporting qualitative changes during the first COVID-19 episode
had a higher risk of developing PCD. 62.5% (10 of 16) participants reporting qualitative
changes during their first COVID-19 episode reported PCD after 721 days, whereas only
7.1% (1 of 14) with isolated quantitative loss during COVID-19 reported PCD after 721 days
(Figure 2). Predictive factors for PCD are not yet established [29,34–36], but among others,
parosmia [34] and high baseline severity of smell loss [30,32] have been associated with
long recovery periods and the development of persistent olfactory dysfunctions.

In general, we observed a decreasing frequency of qualitative symptoms, such as
parosmia, phantosmia, and dysgeusia comparing time points “244 days” and “721 days”.
Qualitative symptoms either lifted or gave way to isolated quantitative losses (see Figure 2
and Table A1). Reden et al. describe similarly, that a significant proportion of patients with
parosmia or phantosmia of various causes, recovered from these qualitative symptoms
independently of improvement in quantitative olfactory capacity, within one year (29%
recovery of parosmia, 53% recovery of phantosmia) [37]. Interestingly, we also observed a
change in the type of qualitative dysfunction in one participant who reported parosmia
and dysgeusia up to the 244-day study visit, and then at the 721-day study visit reported
a newly emerged heightened sense of smell (hyperosmia), which had replaced parosmia.
Hyperosmia has been described to occur during migraine attacks, after meningitis, viral
infection, or toxic exposure and might be caused by uncontrolled neuronal sprouting after
injury [38–40]. In the context of SARS-CoV-2 infection, there has been only one report of
two cases with self-reported hyperosmia around two months after COVID-19 [39]. In line
with the results of other cases [39,40], the hyperosmia self-reported by our participant was
not evident in psychophysical test results, where hyposmia was reached. Consequently,
the self-reported hyperosmia in the case reported by us stems most probably rather from
hedonic hyper-perception of smell [41] than from a lowered threshold in odor detection.

The observed 25% prevalence of self-reported persistent chemosensory dysfunction
two years post-infection seems to be high. Nevertheless, one must keep in mind that self-
reports of chemosensory dysfunction poorly correlate with psychophysical test results and
mostly underestimate the prevalence of chemosensory dysfunction [22,23,42]. Therefore,
the usage of psychophysical tests is recommended to assure a more reliable assessment of
chemosensory function [43,44]. This is in line with our results after 721 days. Self-reported
persistent gustatory dysfunction (PGD) (8 of 40 (20%)) was less frequent than abnormal
Taste stripes test results (12 of 40 (30%)) and did not correlate. The results of the Sniffin’
Screening 12 Test also showed a higher percentage of participants with an impaired sense
of smell (20 of 40 (50%)) than in the self-reports (9 of 40 (22.5%)). The only other study using
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a psychophysical identification test two years after infection showed a low prevalence of
2.9% in the odor identification test with a higher prevalence of self-reported chemosensory
dysfunction of 29,8% [19]. This might be partly explained by the olfactory training the
participants of Lechien et al. completed [19]. We did not find a correlation between Sniffin’
Screening 12 Test score and self-reported PCD in general or persistent qualitative changes,
but a correlation with a large effect size between self-report of quantitative losses in smell
and Sniffin’ Screening 12 Test score was observed. The two participants with the lowest
scores (5 (anosmia) and 7 (hyposmia)) in the Sniffin’ Screening 12 Test also reported a
subjective quantitative loss. Comparing psychophysical screening test results after 100
and 721 days, there was no significant difference between the results of the Taste stripes
test, but Sniffin’ Screening 12 Test scores improved significantly. Even though we only
used a screening test, this result suggests that the severity of smell loss receded in our
cohort, even though the number of participants reporting persistent dysfunctions stayed
almost constant. Recent studies also showed a favorable development of olfactory and
gustatory function and even cases of late recovery [13,19]. Similarly, Duncan et al. describe
the psychophysically measured improvement of smell function in patients suffering from
olfactory loss after upper respiratory infection during repeated measurements within up
to five years [45]. This suggests olfactory function might also improve even years after
SARS-CoV-2 infection.

There are many different explanations for the aetiologia of persistent chemosensory
dysfunctions, from disruption of the olfactory epithelium to a dysregulated immune
response [31,46,47]. Regarding cellular immune response, we observed a trend that par-
ticipants who experienced symptoms of smell and taste at different time points had a
higher percentage of CD8+ T-cell responders versus nonresponders after 63 or 721 days
(Figure A6A,B), which was clearer in the group without reinfection. In contrast, Rank et al.
did not find any correlations between T-cell response and long-term smell and taste symp-
toms [30]. Additional studies with larger cohorts are needed to investigate this trend.
Concerning humoral immune response, we did not find any correlation between partici-
pant IgG, IgA, or nAb antibody levels and PCD after 721 days or chemosensory dysfunction
during the first infection with SARS-CoV-2 (see Figure A3A,B). The literature on this topic
shows varied results with some studies showing correlations between higher serum anti-
body levels after some months and SARS-CoV-2-induced smell and taste symptoms [48,49]
and others not finding correlations [31,46]. Small cohorts, different methodologies, and
varying time points of antibody titer measurement limit the interpretation of results. There
is evidence that low levels of IgA [46] and salivary IgG [31] are associated with PCD. A
possible explanation for this correlation is that a lack of mucosal immune response leads to
chronic inflammation of olfactory tissue and consequently to PCD [46,50]. This would imply
that the mucosal immune response is a key regulator of SARS-CoV-2-induced chemosen-
sory dysfunction, whereas systemic immunity plays a minor role [51–53]. This thesis is
supported by studies showing no significant difference in the prevalence of chemosen-
sory dysfunction during reinfection between patients with or without vaccination [5,54],
whereas chemosensory dysfunction was less likely during reinfection in participants who
had previously contracted SARS-CoV-2 [54]. In contrast to natural infection, most currently
available SARS-CoV-2 vaccines generate only a limited mucosal immune response [52,55].
In our cohort, 20 of 44 (25.5%) participants were reinfected with SARS-CoV-2. Only 2 (10%)
reported chemosensory dysfunctions during their additional COVID-19 episode. None
of the participants with chemosensory dysfunction during the first COVID-19 episode
reported repeated chemosensory dysfunction during reinfection. Lechien et al. reported
repeated chemosensory dysfunction during reinfections in 2020 [56,57] but even though not
statistically significant, less frequent than the singular occurrence of chemosensory dysfunc-
tion [57]. Furthermore, the duration of olfactory dysfunction was significantly shorter in the
cases of repeated loss during reinfection [57]. Small cohorts (n = 45 Lechien et al. and n = 44
our study) as well as different latencies between the dates of reinfection (5,6+-2,3 months
Lechien et al. and around 22 months in our study) and different virus variants prevent
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closer comparisons and limit informative value. Larger cohorts are needed to investigate
patterns of chemosensory dysfunction during reinfections.

In our cohort, we observed a low prevalence of chemosensory dysfunction during
reinfection can be partly explained by the dominant virus variant during the main phase
of reinfection. Except for one participant who was reinfected as early as December 2020,
all were most probably reinfected with Omicron (BA.1 and BA.2 lineage), which was by
far the predominant variant in Germany from January 2022 onwards [58,59]. In general,
evidence is accumulating that chemosensory dysfunction occurs less frequently in more
recent variants with a prevalence of only 4–33% in Omicron [5,6,54,60]. This may be due to
modifications in the spike protein and herewith reduced interaction with proteins of the
olfactory epithelium responsible for virus uptake, such as angiotensin-converting enzyme
2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) [61–63].

Although the prevalence of chemosensory dysfunction in more recent SARS-CoV-2
virus variants is declining, the number of infections and reinfections is still growing, and
therefore a growing number of patients with persistent chemosensory dysfunction (PCD)
can be expected. PCD of different causes can lead to reduced quality of life, which has
also been described in the context of COVID-19 [12,22,64]. After around two years, 5 of
44 (11.4%) participants of this study reported an impaired life quality due to PCD. PCD
seems to specifically affect the mental health component of quality of life, leaving the
physical component unaffected [12]. Patients with PCD of various causes report not only
depression but also eating disorders, anxiety, as well as loss of pleasure in food and social
engagement [14–16,65,66]. The occurrence of persistent changes in smell or taste, as well
as the severity of chemosensory dysfunction during COVID-19, seem to be independent
of age [12,32]. Consequently, patients of all age groups can experience disruption of daily
life and quality of life due to PCD. Since PCD might in addition indicate a higher risk for
future neurodegenerative disease [17,18] studies on the long-term development of these
symptoms should be continued.

This negative prognosis is mitigated by the long-term literature on the postinfec-
tious olfactory loss caused by other viruses, showing that recovery occurred even years
after infection [37,67]. Furthermore, olfactory training has been proven to be helpful in
postinfectious olfactory loss and can induce neural reorganization processes [68–71]. Re-
search on treatment options for chemosensory dysfunction in the context of SARS-CoV-2 is
growing [19,72,73] and will become more and more important in lessening the impact of
long-COVID.

5. Limitations and Strengths

This study’s cohort is small comprising 44 participants. Several participants were rein-
fected with SARS-CoV-2 and the cohort shows a variety of immunization statuses. Analysis
of antibody responses in correlation with gustatory and olfactory symptoms was therefore
conducted not only with all participants but also in the groups of participants with only
one or only two infections to lessen the impact of this limitation. Nevertheless, the resulting
singular constellations of symptoms and immunization status limit the interpretation of
the study. An advantage of this cohort is, however, that all participants acquired the first
infection, as well as reinfections with SARS-CoV-2 at the same place and at similar time
points. In addition, the follow-up rate of 100% for self-report and around 85% for analysis
of immune response after 721 days, was high. The questionnaires were self-developed, and
the applied psychophysical tests are mere screening tests. Information on chemosensory
dysfunction during first and repeated SARS-CoV-2 infections was collected in retrospect
since our questionnaires were only applied after 100 (Q1) and 244 (Q2) days in our previous
study and after 721 days (Q2) in this follow-up study. The lack of baseline measurement
may have influenced the accuracy of self-reports. To lessen the impact, participants were
asked repeatedly about chemosensory dysfunction during the first infection and inconsis-
tent replies were followed up. The time points of study visits correspond to a larger range
which restricts comparability between participants.
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6. Conclusions

In conclusion, most of this cohort recovered from SARS-CoV-2-induced changes in
smell and taste within the first 100 days post-infection, very little improvement was seen
after this time point. After 721 days, a significant proportion (25%, 11 of 44) of participants
still reported persistent chemosensory dysfunctions (PCD), with 11% (5 of 44) of the
cohort reporting consequently impaired quality of life. The risk of developing PCD was
higher in patients reporting qualitative changes during the first infection. There was no
correlation between symptoms of smell or taste and antibody levels, but the trend of a
higher percentage of CD8+ T-cell responders in patients with self-reported chemosensory
dysfunction was observed. Furthermore, hyperosmia can occur as a late-onset symptom
after SARS-CoV-2 infection.
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Figure A2. Comparisons of the Sniffin’ Screening 12 Test score of participants with or without persis-
tent olfactory dysfunctions at a median of 721 days after the first positive RT-PCR test. (A,B) Analysis
with the Wilcoxon test showed no significant difference between the score of participants with and
without persistent olfactory dysfunction in general (Wilcoxon p = 0.18) or the score of participants
with and without persistent qualitative change of smell (Wilcoxon p = 0.21). (C) Participants report-
ing a persistent quantitative loss of smell scored significantly lower than the asymptomatic group
(Wilcoxon p = 0.04).
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Figure A3. SARS-CoV-2 specific antibody levels with median after 721 days in relation to chemosen-
sory dysfunction. The Wilcoxon test was applied for all participants (n = 40), group A (participants
with only one infection (n = 21)) and group B (participants with two infections and reinfection in
2022 (n = 16)). Comparisons between antibody levels of participants with and without chemosensory
dysfunction during the first COVID-19 episode or with and without persistent chemosensory dys-
function after 721 days showed no significant differences. (A) Anti-SARS-CoV-2 IgG activity and (B)
anti-SARS-CoV-2 IgA activity after 721 days did not correlate with smell and taste symptoms.
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tions and reinfection in 2020. Almost all participants had nAb activity levels over 800 AU/mL. The
two lowest nAb results could be explained by vaccination status. Three participants showed lower
nAb levels without obvious reasons. No connection between chemosensory dysfunction and levels
of nAbs was evident.
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Figure A6. Percentage of participants with and without detectable T-cell response in relation to
chemosensory dysfunction at different time points (blue and gray coloring, respectively). The
number of participants in the different groups is shown in white within the columns. (A) Analysis
of samples collected after a median of 63 days showed a higher percentage of T-cell responders in
the chemosensory dysfunction (CD) group (87% with CD during vs. 64.29% without CD during).
(B) Analysis of samples collected after 721 days showed a trend of higher responder percentages
in the groups reporting CD during the first infection or PCD after 721 days. T-cell response and
symptoms were analyzed for all participants (n = 37), group A (n = 20) and group B (n = 15). This
trend was more visible in group A.

Table A1. Reported frequencies of qualitative changes (phantosmia, parosmia, dysgeusia, and
hyperosmia), quantitative losses (anosmia, hyposmia, ageusia, hypogeusia), and which sense was
affected during COVID-19 as well as after a median of 100, 244 and 721 days. Data were collected
by questionnaires Q1 (time points “during” and “100 days”) and Q2 (time points “during”, “244”
and “721”). Information concerning smell and taste during the first COVID-19 episode was collected
in retrospect, data concerning time points “100 days”, “244 days” and “721 days” were collected
prospectively. Numbers marked by “*” include one participant, who had problems with hyposmia
only during and since the second infection with COVID-19 in January 2022 (persistent since 111 days
at follow-up study visit). All other participants suffered from the alteration in taste and/or smell
since their first infection 721 days previously.

Description During
COVID-19 100 Days 244 Days 721 Days

Asymptomatic 14 33 30 32
Alteration of taste or

smell 30 11 14 12 *

Quantity only 14 1 1 7 *
Taste only 1 1 0 0

Ageusia (ag.) 1 0 0 0
Hypogeusia (hg.) 0 1 0 0

Smell only 0 0 0 2 *
Taste and smell 13 0 1 5

Ag. and anosmia (an.) 13 0 0 0
Hg. and hyposmia (Ho.) 0 0 1 5
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Table A1. Cont.

Description During
COVID-19 100 Days 244 Days 721 Days

Quality only (total) 6 7 10 4
Taste only–Dysgeusia

(dy.) 5 2 2 1

Smell only 0 4 3 1
Parosmia (pa.) 0 2 1 0

Phantosmia (ph.) 0 1 2 1
Pa. and ph. 0 1 0 0

Taste and smell 1 1 5 2
Dy., pa. and ph. 1 1 2 0

Dy. and pa. 0 0 2 1
Dy. and ph. 0 0 1 0

Dy. and Hyperosmia 0 0 0 1
Quality and quantity

(total) 10 3 3 1

Taste only 0 0 0 0
Smell only-pa. and ho. 0 1 1 1

Taste and smell 10 2 2 0
Dy. and an. 3 0 0 0

Dy., pa. and ph. 1 0 0 0
Dy., an., pa. and ph. 1 0 0 0

Ag., an. and pa. 1 0 0 0
Ag., an. and ph. 1 0 0 0

Ag., an., pa. and ph. 3 0 0 0
Dy., hg. and ho. 0 1 1 0

Dy., ho., pa. and ph. 0 1 0 0
Dy. and ho. 0 0 1 0
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