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Luca Aldrighetti9, Chiara Bonini6,5, Giulia Casorati1 , Paolo Dellabona1, Claudia de Lalla1

We describe a multi-step high-dimensional (HD) flow cytometry
workflow for the deep phenotypic characterization of T cells
infiltrating metastatic tumor lesions in the liver, particularly
derived from colorectal cancer (CRC-LM). First, we applied a novel
flow cytometer setting approach based on single positive cells
rather than fluorescent beads, resulting in optimal sensitivity
when compared with previously published protocols. Second, we
set up a 26-color based antibody panel designed to assess the
functional state of both conventional T-cell subsets and un-
conventional invariant natural killer T, mucosal associated in-
variant T, and gamma delta T (γδT)-cell populations, which are
abundant in the liver. Third, the dissociation of the CRC-LM
samples was accurately tuned to preserve both the viability
and antigenic integrity of the stained cells. This combined pro-
cedure permitted the optimal capturing of the phenotypic
complexity of T cells infiltrating CRC-LM. Hence, this study pro-
vides a robust tool for high-dimensional flow cytometry analysis
of complex T-cell populations, which could be adapted to
characterize other relevant pathological tissues.
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Introduction

High dimensional (HD) flow cytometry enables the analysis of a
broad range of surface and intracellular antigens, by interrogating
high numbers of cells and characterizing rare populations for the
expression of multiple parameters (Palit et al, 2019). These tech-
nological advances have enhanced the deep phenotype dissection
and complex network characterization in heterogeneous tissues at
a single cell level. The component characterization of the tumor
microenvironment (TME), aimed at evaluating the heterogeneous
cellular network that conditions anti-tumor immune responses

(Hiam-Galvez et al, 2021; Vitale et al, 2021), is of particular interest.
Cancer, myelo-monocytic (Kwak et al, 2020; Tcyganov et al, 2021),
and regulatory T (Treg) cells (De Simone et al, 2016; Ohue &
Nishikawa, 2019) are widely recognized suppressors of anti-
tumor T-cell immune response. Effector T cells infiltrating the
TME progressively differentiate toward an “exhausted” state,
expressing high levels of inhibitory molecules that impair their
ability to control tumor progression (Wherry & Kurachi, 2015; Blank
et al, 2019). The crosstalk between CD4+ follicular helper T cells (TFH)
and B cells in the TME can lead to the organization of tertiary
lymphoid structures, which can have opposite prognostic values
depending on the tumor type (Protti et al, 2014; Sautès-Fridman et
al, 2020; Noël et al, 2021). Furthermore, in addition to MHC-restricted
conventional T cells, non-MHC–restricted T cells, defined as un-
conventional ones, are also implicated in spontaneous tumor
immune-surveillance (Godfrey et al, 2010; Mori et al, 2016; Gorini et
al, 2017; Lawand et al, 2017; Cortesi et al, 2018; Li et al, 2020). The
major known unconventional populations are invariant natural
killer T (iNKT), mucosal associated invariant T (MAIT), and gamma
delta T (γδT) cells, which are specific for non-peptide antigens
presented or associated with the non-polymorphic CD1d, MR1, or
butyrophilin 3A1 (BTN3A1) molecules, respectively, and together can
account for up to 30% of total T lymphocytes particularly in the liver
(Godfrey et al, 2015). This complex composition of immune pop-
ulations in the TME may also be differentially organized from
primary to metastatic sites in an organ-dependent manner,
impacting the therapeutic outcome (Peinado et al, 2017). Collec-
tively, this premise depicts a very complex cellular contexture in the
TME, whose understanding can greatly help both in deciphering the
mechanisms of tumor progression and in the design of new
therapeutic strategies.

CRC is the third cause of cancer death worldwide, particularly in
its metastatic forms that mostly target the liver (Xi and Xu, 2021). We
are interested in the deep profiling of the T-cell immune landscape
of hepatic metastases of CRC by HD flow cytometry. In the present
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work, we describe a novel methodological workflow for HD flow
cytometric analysis of tumor-infiltrating T cells, including con-
ventional effector, Treg, TFH, and unconventional T-cell subsets
from CRC-derived liver metastases (CRC-LM), encompassing: (1)
application of a recently developed cell-based calibration
protocol for optimizing the flow cytometer setting; (2) design of a
novel 26-color based T-cell panel sampling both conventional and
unconventional T-cell subsets; (3) implementation of a protocol to
isolate single cell suspensions from surgically resected CRC and
CRC-LM. The combination of these accurate experimental proce-
dures with the data analysis by cytoChain (Manfredi et al, 2021), a
recently described in silico workflow for flow high-dimensional
analysis, offers a reliable tool for the characterization of the
liver metastatic T-cell landscape.

Results

Instrument calibration

The first step we undertook in the setup of the new workflow for HD
flow cytometry was the instrument calibration. Using a BD FACS
Symphony A5, we selected the appropriate photomultiplier voltage
(PMTV) amplifications to generate high quality multicolor data.
PMTV amplifications impact the resolution sensitivity, defined as
the capacity to distinguish dimly stained elements from unstained
ones (Hoffman, 2005; Perfetto et al, 2012). The stain index (SI)
parameter is a commonly accepted indicator to evaluate the
resolution of positive versus negative fluorescence signal (see the
Materials and Methods section). To establish a suitable amplifi-
cation to acquire human lymphocyte samples (Symphony A5
configuration shown in Table S1), we used PBMCs single stained
with anti-human CD4 mAbs conjugated with 27 different fluoro-
chromes emitting in all the detector channels. We then performed
the process of PMTV titration (herein defined as “Voltration” and
described in detail in the Materials and Methods section), which
consists in evaluating the SI pattern of each CD4-stained sample as
a function of progressively increasing PMTV in the corresponding
channel (Figs 1A and S1). Ideally, the optimal voltages will corre-
spond to the inflexion point of the curves. Amplifications below this
point correspond to suboptimal resolution, whereas amplifications
above this point can result in excessively bright signals. Once the
preferred amplifications are selected, a visual inspection of the
corresponding data plots verifies that negative signals are fully
resolved above the bi-exponential scale, and positive signals do
not exceed the detection range (Fig 1A). In the context of HD flow
cytometry, fluorochromes with overlapping emission spectra
cannot be avoided. This condition generates fluorescence signal
spillover among neighboring channels with similar wavelengths
even when they are excited by different lasers. A few fluoro-
chromes (e.g., FITC) generate low or no spillover signal into other
channels, whereas it is much more common for fluorescent dyes,
particularly the tandem ones (e.g., PE-Cy5), to create significant
spillover signal in neighboring detectors (Fig 1B) as a result of
their overlapping spectral characteristics or the direct excitation
of the acceptor dyes by the other laser sources. For this reason, we
further evaluated the reciprocal spillovers to ensure that each

fluorochrome preferentially emits signal into its own detector. The
end point of this calibration process is the setting of PMTV finely
tuned to achieve maximal signal resolution (Table S1). To validate
the cell-based Voltration procedure, we compared this approach
with the bead-based Cyto-Cal/QCSB, which is well established as
a reference protocol (Perfetto et al, 2012) (detailed in the Materials
and Methods section, Fig S2 and Table S1).

HD mAb panel design

To design themAb panel to investigate our target T-cell populations
by HD flow cytometry, we assigned antigens expressed at high and
low densities to dull and bright fluorochromes, respectively
(Maciorowski et al, 2017; Flores-Montero et al, 2019; Holmberg-
Thyden et al, 2021), taking into account the reciprocal spread
among dyes (Brummelman et al, 2019). The phenomenon of
reciprocal spread reduces the SI that a given dye undergoes
when its channel is impacted by a spread signal produced by
the presence of a second dye, and it is typically a function of
signal brightness and wavelength of affecting and affected dyes. Fig
1C exemplifies the impact of the PE-Cy5 generated spread on three
different fluorochromes (BV421, APC-R700, and BB755), which
consequently reduces the resolution of a double-positive pop-
ulation, while leaving the resolution of single-positive signals in-
tact. This design approach resulted in a sensitive and reliable
26-color–based T-cell panel (Table S2) for HD flow cytometry to dissect
both conventional and unconventional T cells infiltrating the liver
metastases of CRC. To distinguish total leukocytes we included the
CD45 antigen, together with CD3, CD4, and CD8 for the main con-
ventional T-cell subsetting. To assess T-cell differentiation stages,
CD45RA, CD62L, and CD95 antigens were chosen, allowing for the
classification of CD45RA+CD62L+CD95− naı̈ve, CD45RA+CD62L+CD95+

memory stem, CD45RA−CD62L+ central memory, CD45RA−CD62L−

effector memory, and CD45RA+CD62L− terminal effector T cells
(Cieri et al, 2013; Gattinoni et al, 2017; Noviello et al, 2019).
Moreover, the chosen antibody combination also allowed for the
identification of TFH cells as CD45RA−CD62L−CD4+CXCR5+PD1+ICOS+

and Treg cells as CD4+ CD25+ CD127low/neg. Unconventional T cells
were unequivocally identified by staining with CD1d tetramer (tet),
MR1tet, and anti-pan TCRγδ chain antibody, which bind the TCRs
expressed by iNKT, MAIT, and γδT cells, respectively. Activation and
functional exhaustion state of tumor-infiltrating T cells were
investigated by detecting the expression of an extended range of
immune receptors, such as: 2B4, LAG3, TIGIT, PD1, ICOS, OX40, GITR,
CD39, HLA-DR, whereas CD69 and CD103 were used to label tissue-
resident T cells (Dyck & Mills, 2017; Marin-Acevedo et al, 2018; Kim
et al, 2021). Antibodies and tetramers were titrated to ensure an
optimized staining (Fig S3 and Table S3).

Performance evaluation of the Voltration instrument calibration
applied to the HD mAb T-cell panel

We next validated the cell-based Voltration procedure with respect
to the HD T-cell panel designed for the analysis of CRC-LM. First, we
compared the Voltration calibration with the bead based Cyto-Cal/
QCSB that is well established as a reference protocol (Perfetto et al,
2012) (see the Materials and Methods section, Fig S2 and Table S1).
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PBMCs were stained with the set of anti-human CD4 conjugated
with 27 different fluorochromes described above and acquired with
PMTV amplification selected by either Voltration or Cyto-Cal/QCSB
calibration. The two approaches resulted in comparable patterns of
stain indexes, although Voltration showed the tendency to generate
higher signals, which were particularly evident in BUV395 and in the
range of the Yellow Green excited fluorochromes (Fig S4A–C).
Second, the two calibration procedures were compared by ac-
quiring T cells stained with the 26 HD mAb T-cell panel, also

described above, to evaluate the impact of reciprocal interference
among fluorochromes. For this specific purpose, T cells were
polyclonally activated before staining by incubating PBMCs from
healthy donors with PHA for 72 h to maximize the surface ex-
pression of the markers targeted by the mAb panel (Figs 2, S5A, and
S6). Dot plot data analysis (Fig 2) showed a higher frequency of
LAG3+, TIGIT+, GITR+, and CD95+ T cells detected using Voltration
compared with the Cyto-Cal/QCSB setup procedure. Consequently,
for example, a higher frequency of CD45RA+CD62L+CD95+ memory

Figure 1. PMTV setting by Voltration protocol.
(A) The acquisition of single stained PBMCs was done at different voltages to calculate Stain Index Pattern as a function of PMT voltages and to determine the optimal
setting. FITC and PE-Cy5 are shown as examples. Red asterisks and vertical bars represent the selected amplifications. Fluorescent signals at the chosen amplification
were visually inspected on dot histograms to verify full resolution of negative signal and positive signal being on scale. (B) Fluorochrome signal spillover was checked on
every detector to ensure that each color emits primarily into its specific channel. FITC is shown as an example of fluorochrome which is creating low spillover; PE-Cy5 is
shown as an example of fluorochrome generating evident spillover signals in other channels. (C) Dot plot examples showing the impact of PE-Cy5 staining on BV421,
APC-R700, and BB755 channels. Graphical representation helps visualize how the progressively increasing spread of PE-Cy5 into the three displayed channels reduces the
resolution of double positive (DP), but not of single positive (SP) populations.
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Figure 2. Biological validation of the Voltration setting: Healthy PBMCs were purified by Ficoll density gradient and in vitro activated with PHA 1 μg/ml in complete
medium culture.
After 72 h, cells were harvested and stained with T-cell panel (Table S2 for antibody list and Fig S5A for gating strategy). Dot plot pairs for each conjugated mAb (x-axis)
versus anti-CD3 (y-axis) are reported, with left plots resulting from Voltration and right plots from Cyto-Cal/QCSB calibration. CD1dtet+, anti-pan-TCRγδ+, and MR1tet+ cells
identify invariant natural killer T, γδT, and mucosal associated invariant T cells, respectively. Positivity was assessed keeping the CD3− population or non-activated
PBMCs from the same donor as the internal negative control. One representative experiment out of two is shown.
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stem cells could be identified on PBMCs cultured for 72 h in the
absence of PHA and acquired with the Voltration setup than with
Cyto-Cal/QCSB bead calibration, due to a lower resolution of the
CD95+ T-cell population with the latter setting (Fig S5B). These
observations were confirmed showing the ratios of SI (Fig 3A) or
positive cell frequency (Fig 3B) calculated with the Voltration
calibration versus those calculated with the Cyto-Cal/QCSB cali-
bration. Overall, these results supported the use of the Voltration

calibration approach to set the PMTV for high quality multicolor
flow cytometry with the designed HD T-cell panel.

Tumor tissue processing

After setting up the staining conditions for the T cells, we inves-
tigated whether the processing conditions applied to obtain single
cell suspensions from CRC-LM were affecting the optimal detection

Figure 3. Performance of Voltration setting.
(A, B) Stain index (SI) (A) and positive cell frequency (B) ratios for each marker calculated with Voltration versus Cyto-Cal/QSCB settings (same staining as in Fig 2).
Percentage differences >+10% or <−10% are represented by red bars and blue bars, respectively. All SI and frequency values were calculated within CD45+CD3+ T-cell
population except for CXCR5, 2B4, HLA-DR, CD19, CD39 among CD45+CD3− cells; CD3 among CD45+ cells; CD45 among FVS620− live cells; and FVS620+ dead cells among singlet
lymphocytes. One representative experiment out of two is shown.
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of the targeted markers. Therefore, we focused on developing
suitable protocols for the dissociation of surgically resected
samples of CRC-LM to analyze their T-cell infiltrate. We combined
an initial manual fragmentation together with a subsequent

mechanical dissociation in the presence of enzymes for nucleic
acid and proteolytic digestion (Figs 4A and S7). We selected the
37C_Multi_A_01 gentleMACS program for a 41-min dissociation
during which the samples were incubated with nuclease and

Figure 4. Optimization of hepatic tissue
processing to single cell suspension.
(A) The metastasis was surgically resected, and
a single cell suspension was obtained from a
peritumoral tissue section as described.
Different proteolytic enzymes (Enzyme R,
Collagenase IV, or CLSPA Collagenase) were used
together with Enzyme A and Enzyme H during
the mechanical dissociation by gentleMACS.
(B) The single cell suspension was stained and
the expression of protease sensitive antigens
(e.g., CXCR3, CXCR5, CCR6, CCR7, and CD25) by
CD3+ T cells was quantified by flow cytometry.
One representative experiment out of two is
shown.
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proteolytic Enzyme A, Enzyme H, and Enzyme R cocktails according
to the manufacturer’s instructions (Fig 4A). However, this particular
combination severely impacted the integrity of lymphocyte surface
markers (Figs 4B and S7). To circumvent this drawback, we evalu-
ated three different conditions of proteolytic treatment during the
tissue dissociation: (i) fivefold reduced concentration of Enzyme R
in the initially used volume; (ii) substitution of Enzyme R with
chromatographically purified Collagenase CLSPA (22 U/ml) con-
taining a high collagenase activity, but minimal contamination by
proteolytic enzymes that could digest cell surface antigens; and (iii)
substitution of Enzyme R with Collagenase IV (10 U/ml), a more
crude extract commonly used to obtain single cell suspension from
tissue for flow cytometry analysis (Trapecar et al, 2017). Slightly
higher numbers of viable leukocytes were recovered with Enzyme R
compared with CLSPA or Collagenase IV (Enzyme R yielded 0.3–1.8 ×
106, CLSPA 0.3–1.5 × 106 and Collagenase IV 0.3–1.1 × 106 cells/100 mg
tissue from four different patients). We then verified the effects of
each tissue processing protocol on the expression level of the
markers known to be the most sensitive to proteolytic activity, and
we observed that even a strongly reduced amount of Enzyme R
completely abolished CXCR3 expression and lowered the staining
intensity of CXCR5, CCR6, CCR7, and CD25, when compared with
CLSPA and Collagenase IV. CLSPA better preserved both CXCR3 and
CCR6 compared with Collagenase IV, which instead improved the
resolution of only CCR7. CLSPA was therefore selected for the
subsequent experiments. With the aim of comparing LM-CRC with
primary colorectal cancer (CRC) immune infiltrates, we attempted
to dissociate CRC samples. However, the abovementioned 41-min-
long gentleMACS program did not lead to any recovery of leukocytes
from primary CRC lesions. To retrieve viable leukocytes from CRC
primary tumor (Range: 35,000–280,000 viable leukocytes), we pro-
longed the time of dissociation to 60 min (37C_h_TDK_1 program)
along with treatment with Enzyme A, H, and CLSPA as for CRC-LM,
improving the final quantitative and qualitative cell recovery.

Phenotypic characterization of tumor-infiltrating lymphocytes

We applied the optimized methodology described above to stain
fresh single cell suspensions derived from CRC-LM and distal
normal liver (NL) samples, obtained from the same patient (Figs 5,
S8A, and S9–S11). The expression of CXCR5, ICOS, HLA-DR, TIGIT,
CD103, PD1, CD95, CD25, CD69, and CD39 was clearly higher among
tumor-infiltrating T cells than within normal hepatic tissue. We also
noticed that 2B4, previously reported to be associated with T-cell
exhaustion in the TME, was expressed at higher level by CD3+ and/or
CD3− cells from the normal tissues than the tumor tissues. In ad-
dition, γδT, MAIT, and iNKT cells could be detected both in normal
liver and neoplastic tissue samples. Moreover, rare intratumoral
CXCR5+PD1+ICOS+ TFH and CD4+CD25+CD127− Treg cells were more
frequent in the tumor than the normal liver tissue (Fig 6A and B). We
also applied the aforementioned T-cell antibody panel to stain
single cell suspensions from primary CRC tissue sections, com-
paring phenotypes of circulating and tumor-infiltrating T cells from
the same patient (Figs 7, S8B, S12, and S13). The expression of LAG3
and CD62L, which were almost undetectable in hepatic tissue, was
evident in primary CRC infiltrating and circulating T cells, respec-
tively, hence excluding the possibility that these antigens could

have been damaged by the tissue processing procedure or that
their specific antibodies were not properly titrated. We also
assessed the performance of the T-cell mAb panel on LM-CRC single
cell suspensions that had been previously frozen. However, we
observed that the expression level of some exhaustion markers,
mostly LAG3 and PD1 on T cells, and the frequency of unconven-
tional T cells were lower in thawed samples in comparison with
fresh samples (Fig S14). Collectively, these observations confirmed
that the described procedures facilitate the accurate detection of
phenotypic profiles of T cells infiltrating CRC-LM, which was optimal
for freshly drawn and serially acquired consecutive samples.

Identification of tumor-infiltrating unconventional T cells by
computational analysis

We challenged the accuracy and sensitivity of our workflow by
verifying whether also less characterized tumor-infiltrating un-
conventional T-cell populations could be identified by unsuper-
vised computational analysis, in addition to classical analysis
approaches. Unsupervised analysis of the previously described
CRC-LM infiltrating T-cell data set (Fig 5) was carried out by cyto-
Chain, a recently published web application for HD flow cytometry
data mining (Manfredi et al, 2021). The cytoChain modular pipeline
includes pre-analytical steps to correct flow cytometer fluctuations
and multidimensional data scattering; evaluation of the appro-
priate HD analysis according to the specific data set qualities; and
quantitative analysis to identify clusters of cells sharing similar
phenotypes with an exhaustive graphical output. The first pre-
analytical step was to exclude the rare fluorescence signal fluc-
tuations caused by unstable instrumental acquisition by FlowAI
(Monaco et al, 2016). Second, to mitigate the complexity of the flow
cytometry data distribution resulting from the variance of different
fluorescence intensities (Finak et al, 2010), the cleaned data were
transformed by arcSinh scaling. Finally, a density correction was
performed by Spanning-tree Progression Analysis of Density-
Normalized Events (SPADE) (Qiu et al, 2011) to isolate out the
multidimensional scattered outliers (3% events were censored and
22,727 cells were analyzed) (Fig S15A). In agreement with our pre-
vious report, this data optimization did not significantly affect the
original frequency of rare cells such as iNKT, γδT, and MAIT cells nor
the distribution of these cells in subsets based on CD4 and CD8
expression (Fig S15B and C). We then performed the dimensionality
reduction of the optimized data set applying the t-distributed
Stochastic Neighbor Embedding (t-SNE) algorithm (Mahfouz et al,
2015), and the expression level of each marker within the whole
T-cell population was visualized by t-SNE heat-maps (Fig 8A). As
expected, large areas of the t-SNE heat maps were dominated by
CD4+ and CD8+ T cells. Nonetheless, CD1dtet+, MR1tet+, and anti-pan
TCRγδ+ cells could be distinguished despite their low frequency
(Figs 8A and S16A). To further dissect the data set, we applied the
FlowSOM algorithm (Van Gassen et al, 2015), which could not se-
lectively assign iNKT cells to any cluster or meta-cluster even
though they were tightly grouped on the t-SNEmap (Fig S16A and B).
To overcome these problems, we implemented our recently de-
scribed cytoChain application (Manfredi et al, 2021) with FastPhe-
noGraph (FastPG) algorithm (Fig S16C) (Bodenheimer et al, 2020
Preprint), which computed 28 clusters that were superimposed on
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Figure 5. Performance of Voltration instrument setting associated with hepatic tissue processing and analysis of T-cell infiltrate fromNL and CRC-LM tissue sections.
NL and CRC-LM samples from the same patient were freshly processed bymechanical and enzymatic dissociation with gentleMACS + Enzyme A + EnzymeH + CLSPA. Cells
were harvested and immediately stained with T-cell panel (Table S2 and gating strategy Fig S8A). Dot plots pairs for each conjugated mAb (x-axis) versus anti-CD3
antibody (y-axis) refer to lymphocytes recovered from NL and CRC-LM, as indicated. CD1dtet+, anti-pan-TCRγδ+, and MR1tet+ cells identify unconventional T-cell
populations of invariant natural killer T, γδT, and mucosal associated invariant T cells, respectively. One representative patient out of four is shown.
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the t-SNE map, allowing both the visualization of their distribution
within the data set (Fig 8B) and of their phenotype by a heat-map
generated based on the fluorescence intensity associated to each
expressed marker (Fig 8C). For instance, a specific phenotype
signature was found to be enriched among CD8 T cells for clusters
21, 17, 24, 13, 27, and 23 that expressed both tissue residence (CD69-
CD103) and activation/exhaustion markers to a variable extent (i.e.,
CD39, CD95, TIGIT, 2B4, PD1, HLA-DR, ICOS, and GITR). Accordingly, the
cell frequency within these clusters was higher among CD8+, than
CD4+ and CD4−CD8− (double-negative DN) cell subsets (Fig 8D–G). To
verify whether rare T-cell subsets could be comprehensively re-
trieved by unsupervised analysis with cytoChain, a deeper analysis
was performed. Manually gated iNKT, MAIT, and γδT cells from the
optimized data set (Fig 9A and B) and the location occupied by
CD1dtet+, MR1tet+, and anti-panTCRγδ+cells on tSNE maps (Fig S16A)
are shown. Among the 28 clusters computed by FastPG, the algo-
rithm captured clusters 1 and 2 that homogeneously contained
CD1dtet+ and anti-pan TCRγδ+ cell populations, respectively. Unlike
CD1dtet+ and anti-pan TCRγδ+ cells, MR1tet+ cells were fragmented
in clusters 3–6 (Fig 9C). The CD8+, CD4−CD8−, and CD4+ subset
composition revealed that the CD1dtet+, anti-pan TCRγδ+, and
MR1tet+ cells within clusters 1–6 (Fig 9C) resembled those found for

manually gated iNKT, TCRγδ, and MAIT cells (Fig 9A). Moreover, the
heterogeneity among MAIT cells, which was responsible for their
fragmentation in different clusters, derived not only from a dif-
ferential expression of CD4 and CD8markers, but also from different
levels of fluorescence intensity associated to MR1 tetramer binding,
with the lowest level shown by the fraction of MAIT cells contained
in cluster 6 (Fig 9C). Clusters 1–6 were overlaid on t-SNE maps (Fig
9D) and their positions corresponded to those found for CD1dtet+,
MR1tet+, and anti-panTCRγδ+ cells on tSNE maps Fig S16A, further
confirming the cell identity of the unconventional T-cell subsets
identified by the computational unsupervised analysis. An even
greater complexity was revealed by cluster phenotype de-
convolution (Fig 9E), which showed a differential expression of
markers despite the paucity of cells contained within the clusters.
For instance, although iNKT cells in cluster 1 and MAIT cells in
cluster 6 were bothmainly CD4+, they displayed distinct phenotypes
with a higher expression of CD127 in cluster 1 and of CD95, ICOS,
CD25, HLA-DR, TIGIT, OX40, and CD39 in cluster 6. Together, these
results indicate that the workflow is appropriate for unsupervised
HD analysis and can accurately phenotypically dissect even rare
populations of tumor-infiltrating T cells (Saeys et al, 2016; Liechti et
al, 2021).

Discussion

We have defined amethodological workflow that allows the precise
characterization of the T-cell landscape of CRC liver metastases by
HD flow cytometry. Each single step of the process was carefully
implemented: (1) validation of a new cell-based flow cytometer
PMTV setting, (2) design of a 26-color panel for T-cell landscape
definition that includes both antibodies and tetramers together
with an appropriate staining protocol, (3) optimization of tissue
mechanical and enzymatic digestion conditions for single cell
suspension, and (4) computational analysis of the flow cytometry
data by a recently published application specific for the capture of
very rare cell subsets.

A fundamental prerequisite for high signal resolution in HD flow
cytometry is the appropriate instrumental setting. Two different
definitions of “sensitivity” exist in flow cytometry: the first is known
as threshold sensitivity and is defined as the lowest light signal that
can be discriminated from background. The second is named
resolution sensitivity and refers to the capacity of discriminating
dimly stained from unstained particles (Wang & Hoffman, 2017).
Notably, whereas threshold sensitivity is a pure function of in-
strument design and characteristics, resolution sensitivity heavily
relies on the appropriate setting of PMTVs, thus highlighting how
critical this process is for generating high quality multicolor data.
The most widely accepted workflow to define the appropriate in-
strument setting is an elegant Cyto-Cal/QCSB bead based proce-
dure (Perfetto et al, 2012). Here, we used this well-established
approach as a reference starting point to evaluate a similar process
for PMTV selection (Voltration), which was based on cells rather
than beads. As beads are a synthetic sample, they are less sensitive
to handling and relatively free of debris particles; thus, they have
the potential to facilitate gating strategies and the generation of
reproducible data to guide instrument setup. On the other hand,

Figure 6. Identification of TFH and Treg cells infiltrating NL and CRC-LM tissues.
(A) TFH cells infiltrating NL and CRC-LM (Fig 5) tissue as indicated: total TFH cells
were identified as memory CD45RA−CD62L− CD4+ CXCR5+ T cells, among which the
activated TFH subset was PD1+ICOS+. (B) Putative Treg cells infiltrating NL and CRC-
LM were identified as CD4+CD127low/negCD25+ T cells.

T-cell phenotyping in liver metastases Faccani et al. https://doi.org/10.26508/lsa.202101316 vol 5 | no 10 | e202101316 9 of 18

https://doi.org/10.26508/lsa.202101316


Figure 7. Performance of Voltration instrument setting on primary CRC infiltrating T cells.
CRC tissue was processed bymechanical and enzymatic dissociation with gentleMACS + Enzyme A + Enzyme H + CLSPA. CRC infiltrating and peripheral lymphocytes from
pre-surgical whole blood from the same patient were stained with the T-cell panel (Table S2 and gating strategy Fig S8B). Dot plot pairs for each conjugated mAb (x-axis)
versus anti-CD3 antibody (y-axis) compare pre-surgical whole blood lymphocytes and CRC infiltrating lymphocytes as indicated. CD1dtet+, anti-pan-TCRγδ+, and MR1tet+

cells identify invariant natural killer T, γδT, and mucosal associated invariant T cells, respectively. One representative patient out of three is shown.
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beads can have different optical characteristics from cells in certain
fluorescent channels, and are therefore not representative of the
biological samples to be analyzed. Although cells (PBMCs in our
case) represent biological samples better, they are much more
sensitive to processing, prone to quality issues, and more difficult
to standardize. Voltration protocol relies heavily on the concomi-
tant visual inspection of both SI values versus PMTV value graphs

and the emission pattern of each fluorochrome in all the de-
tection channels, allowing the fine tuning of PMTV values for
optimal signal resolution and minimal spillover. Overall, the two
approaches performed similarly, although in the context of the
whole T-cell panel, Voltration allowed for better resolution of
dim signals associated to exhaustion markers such as LAG3,
TIGIT, and GITR, which are a crucial topic of our study of CRC-LM.

Figure 8. Unsupervised computational high dimensional analysis of LM-CRC infiltrating T cells.
Flow cytometry data from CRC-LM infiltrating T cells (see Fig 5) were cleaned by FlowAI, scaled by arcSinh, and corrected by SPADE test. (A) t-SNE heat-map for each
marker was applied on 22727 CD45+CD3+ events. (B) FastPG algorithm computed 28 clusters that were superimposed on t-SNE map and identified by numbers and colors
as indicated on the right. (C) Heat-map represents the marker fluorescence intensity associated to each cluster. (D, E, F) Cluster distribution on CD4+, CD8+ and DN t-SNE
maps. (G) Cell frequency within each cluster among CD4+, CD8+, and DN T cells.
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Figure 9. CRC-LM infiltrating unconventional T cells are captured by unsupervised computational high dimensional analysis.
Pre-analytical stepswereappliedon infiltratingCRC-LMTcells (seeFig 5)data setas inFig8. (A,B)The frequencyof invariantnatural killer T (iNKT),γδT, andmucosal associated invariant T (MAIT)
cells among total T cells and their distribution inCD4+, CD8+, CD4−CD8−, andCD4+CD8+ subsets obtainedafter optimizationare indicated (frequencies registeredbeforeoptimizationare shown inFig
S15B). (C) FastPG algorithm captured 28 clusters among which cluster #1 and #2, respectively, contain CD1dtet+ and anti-pan γδ TCR+ cells, whereas clusters #3 to #6 are enriched in MR1tet+. The
frequencyof iNKT, γδT, andMAIT cellswithineachcluster, togetherwith their frequencywithin subsetsbasedonCD4andCD8expressionare shown. (D)Clusters #1 to#6weremanuallyoverlaid
on t-SNE maps as indicated. (E) Phenotype de-convolution of clusters in D is reported for each marker.
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Indeed, the optimal resolution of the panel was achieved by
appropriate assignment of dyes to specific antigens and careful
mapping of spread signals.

The processing of highly heterogeneous tissue sections from
colon and liver samples into a single cell suspension was also
addressed. In the present work, we report optimal mechanical dis-
sociation conditions for CRC and LM-CRCwith gentleMACS equipment
that have not been previously described. After finding that the
enzymatic cocktail proposed by the gentleMACS equipment
manufacturer was too aggressive, we selected chromatographi-
cally purified collagenase CLSPA to facilitate tissue disaggregation
while preserving the integrity of the surface antigens considered
most sensitive to proteolytic treatment, such as certain chemo-
kines (e.g., CXCR5, CXCR3, and CCR6) or cytokine receptors (e.g.,
CD25 IL-2Ralpha).

To validate our new workflow, we processed normal liver and
CRC-LM tissues; stained the obtained single cell suspensions with
the 26-color T-cell panel; and acquired them with Symphony A5
calibrated by Voltration procedure. Our workflow yielded excellent
detection resolution for tumor-infiltrating exhausted T-cell subsets
in comparison with normal liver tissues along with the identifi-
cation of γδT and MAIT cells and even of very rare iNKT cells. Deep
resolution of the T-cell landscape revealed differential distribution
of TFH subsets and Treg frequencies among T cells infiltrating
normal and neoplastic lesions. Similar sensitivity was also obtained
with the primary CRC tissue section and whole blood samples,
confirming the possibility to compare peripheral blood, primary
lesion, and derived metastasis concomitantly obtained from the
same individual for the description of the whole T-cell landscape in
different compartments. Furthermore, we observed that the
freezing and thawing procedure negatively impacted certain an-
tigens’ integrity and rare T-cell population frequencies, implying
that our optimized workflow best relies on the serial acquisition
and staining of fresh cell suspensions obtained from consecutive
surgical metastatic resections. This strategy requires a continuous
quality control to standardize the instrument and reagents over
time, which involves the use of CS&T and rainbow beads to detect
laser and/or fluidic chamber failures and to standardize the ac-
quisition procedure as well as the titration of each new batch of
reagents (i.e., antibody, cell vitality dye, and tetramers) to find the
optimal concentration for the best staining resolution (Cossarizza
et al, 2019).

Finally, we demonstrated that our workflow was sensitive
enough to permit the identification of rare populations by unsu-
pervised computational analysis. For example, the relatively rare
unconventional T-cell populations, that is, iNKT, MAIT and γδT cells,
were clearly identified by cytoChain (Manfredi et al, 2021), our re-
cently published computational workflow that integrates several
different available HD analytical tools. The FlowSOM algorithm,
although extremely efficient for several applications, did not
succeed in capturing iNKT cells in a single cluster. Meanwhile, the
FastPG algorithm, captured both iNKT cells and γδT cells within two
distinct clusters.

The purpose of this study was to set up a workflow able to assess
also total γδ T cells from liver metastases, but not yet meant to
dissect the γδ TCR repertoire composition. Among γδT cells, the Vδ1+

subset is known to enrich in human liver (Hunter et al, 2018),

although a sizeable fraction of the Vγ9Vδ2 can also be detected
(Zakeri et al, 2022). Vδ1+ T cells can directly kill primary CRC cells, but
they seem also to play a pro-tumorigenic role (Suzuki et al, 2020).
However, the specific functional phenotype and TCR repertoire of
the γδ T-cell subsets in LM-CRC are ill defined and we are currently
gaining further insight into this issue in a large cohort of pro-
spectively recruited patients. Furthermore, FastPG sub-fractionated
MAIT cells in 4 clusters based on their CD4 and CD8 expression, with
CD4+ cells exhibiting the lowest fluorescence intensity associated
with MR1tet. This MAIT cell heterogeneity was also found on the
original data set by manual gating, demonstrating that it was not an
artefactual result of the computational analysis. We could also
further dissect MAIT cells by phenotype de-convolution of each
cluster and found an interesting cluster expressing a distinctive
CD4+CD95hiCD25hiICOShiHLA-DRhiTIGIThiOX40hiCD39hiCD127low phe-
notype. Relatively infrequent CD4+ MAIT cells with a similar phe-
notype were previously described in the peripheral blood from
healthy donors (Gherardin et al, 2018) and in primary CRC tissue
infiltrate (Li et al, 2020), further confirming the reliability of our
approach.

Collectively, we describe a novel workflow, permitting an in-
depth definition of conventional and unconventional T-cell func-
tional status in CRC-LM in large cohorts of patients. This workflow
can be adapted both to investigate other tissues and to assess
other immune cells known to play a critical role in the TME, such as
myelo-monocytic and B cell populations, to define their interplay
with T cells.

Materials and Methods

Symphony A5 calibration by Voltration protocol

The instrument setting procedure and sample acquisitions were
performed with BD FACSymphony A5 cell analyzer (BD Biosciences)
located in the ISO 9001 certified Flow Cytometry facility FRACTAL at
Ospedale San Raffaele Scientific Institute. The Voltration protocol
was based on PBMCs single stained with anti-human CD4 (clone
SK3) conjugated with 27 different fluorochromes (BD 566352 Human
CD4 Fluorochrome Evaluation kit; BD 624371 Human CD4 Prototype
Fluorochrome Evaluation kit). To ensure optimal staining, CD4
antibodies conjugated with primary and last fluorochrome for each
laser line (BUV395-BUV805 Laser UV; BV421-BV786 Laser Violet;
BB515-BB700 Laser Blue; PE-PE-Cy7 Laser Yellow Green; APC-APC-H7
Red) were pre-titrated (8 points) and optimal concentration,
resulting in 0.8 μg/500,000 PBMCs, was visually determined to
obtain the highest positive/negative signal ratio. This amount of
reagent was adopted to stain all 27 samples. Staining was carried
out for 15 min at r.t., with 500,000 PBMCs/sample resuspended in
100 μl of PBS supplemented with 10% Normal Human Serum (NHS)
(Euroclone Cat. no. ECS0219D). After incubation cells were washed
three times at 510g for 5 min in 200 μl PBS, resuspended in 200 μl
PBS, and immediately sent for acquisition.

To generate the Voltration setting, BD FACSDiva was set creating
one experiment for each laser line. Within the experiment, speci-
mens had the names of tested fluorochromes, and tubes the names
of the adopted voltages. Minimum voltage was set at 250 and
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increased by 25 V up to a maximum of 750 V unless the signal was
out of scale with the lower amplification. Samples were acquired
using flow rate low collecting 1,500 lymphocytes/tube in the ab-
sence of fluorescence compensation.

After acquisition, the Stain Index ðMedianPositive −MedianNegativeÞ
2 × rSDNegative

(SI)
was calculated for each tube and plotted as a function of voltage for
every fluorochrome. The optimal voltage for each fluorochrome
was visually selected based on the following criteria:

(i) At low amplification SI grows rapidly with the increase of PMTVs.
At optimal amplification voltage, the SI curves normally show
an inflection point, from which further increase of the SI is
greatly reduced. Amplifications below the inflection points
correspond to suboptimal resolution, whereas amplifica-
tions above the inflection point result in a moderate gain of
resolution and often in the generation of excessively bright
signals.

(ii) Achieve full resolution of the negative signal.
(iii) Place positive signal within linear range of amplification.
(iv) Each fluorochrome emitting primarily in its detector and to a

less or similar extent into other detectors.
(v) In case no inflection point was evident for a given detector,

voltage was set in range with other detectors of the same laser,
reading dyes at closer wavelengths.

Having ensured that all criteria were met, a compensation matrix
was generated using freshly stained PBMCs in a dedicated
experiment.

Most of the compensation resulted below 100%, the highest
being BV480–BUV496 = 123%.

Symphony A5 calibration by Cyto-Cal/QSCB based protocol

The following reagents were prepared:

(1) Cyto-Cal beads containing broad spectrum dyes at five different
concentrations and one negative peak (one drop corresponding
to 20 μl of particles into 1 ml of PBS in a 12 × 75 mm tube),
rainbow calibration particles (8 peaks, 3.0–3.4 μm) (one drop
corresponding to 20 μl of particles into 1 ml PBS) used for a
better resolution of UV-395 fluorescence peaks.

(2) Unstained COMP beads (40 μl of particles into 60 μl PBS) to
finely locate the negative background in case it is not resolved
by Cyto-Cal reagent.

(i) Each of the above reagents was separately acquired from
250 to 800 V with increasing gains of 50. The fluorescence
signals of Cyto-Cal beads were plotted versus the voltage
values for each detector and the Gain Range Calibration Tool
was outlined on the plot by two boxes: box 1 ranges from the
negative background to the first positive peak (separation
distance) and box 2 from the first to the second positive
peak (linearity distance) (Fig S2A). The voltage is chosen
within a range of optimal sensitivity (box 1, separation
distance, maximal) and linearity (box 2, linearity distance,
constant).

(ii) The selected voltage was validated with capturing anti-
bodies quantum simply cellular beads (QSBCs) (Fig S2B) with

1 negative peak (M1) and four peaks with increasing inten-
sities (from M2 to M5). The beads were stained with 0.8 μl/
sample anti-human CD4 conjugated with 27 different fluo-
rochromes (BD 566352 Human CD4 Fluorochrome Evaluation
kit; BD 624371 Human CD4 Prototype Fluorochrome Evalua-
tion kit) and acquired in the range of the selected voltage
increased or decreased by 25 V for each detector and M2 and
M5 ratios were calculated as: M2 ratio = MFI of the lowest
positive peak/90th percentile of the negative bead, and the
M5 ratio = MFI of the highest positive peak/90th percentile of
the fluorescence signal from the negative bead negative (Fig
S2C). The highest M2 and M5 ratio defining the separation of
dimmest and brightest peaks, respectively, from the negative
peak allowed us to determine the optimal voltage for each
detector.

Antibody panel design criteria

A multicolor panel design has been performed based on consoli-
dated flow cytometry best practice.

Spread induced double positive stain index reduction has been
mapped by generating RIM. This tool allows the appropriate as-
signment of fluorochromes to specificities to avoid dim signal loss
of resolution due to bright signal spread.

Based on these principles:

(i) Dim markers have been assigned to fluorochromes that are
spread free (or minimally impacted by spread) from co-
expressed brilliant markers.

(ii) Bright markers have been positioned (when possible) to
minimize the generation of spread into other colors.

(iii) Dim signals have been assigned to bright fluorochromes.
(iv) Bright signals have been preferentially assigned to dim

fluorochromes.

Titrations of mAbs and tetramers

Each fluorochrome-conjugated mAb, MAIT, and iNKT cell–specific
tetramers listed in T-cell panel (Table S2) were titrated before
performing multicolor stainings as follows.

As indicated in Table S3, mAbs were titrated with thawed ex vivo
or in vitro PHA (1 μg/ml) activated PBMCs for 72 h. After thawing or
activation, PBMCs were plated at 0.5 × 106 cells/well in a 96
U-bottomed well plate, pelleted and blocked in PBS + 10% NHS 10
μl/well. After 15 min at r.t., without washing, cells were incubated
with 1:2 serial dilutions of mAb (from 0.1 to 6.4 μl) or tetramers (from
0.5 to 3 μl) in BD Horizon Brilliant Stain Buffer 50 μl/well. Some
mAbs were titrated upon gating of PBMCs sub-populations iden-
tified by specific antibodies added to the titration mix as indicated
in Table S3. mAbs were incubated for 20 min at r.t., whereas tet-
ramers were incubated for 30 min at +4°C in the dark. In both cases,
cells were washed three times at 510g for 5 min in 200 μl FACS wash
(PBS w/o Ca2+ and Mg2+ + 2% FCS, 0.2% NaN3), then resuspended in
FACS wash (150 μl/well). For vitality dyes titration: Thawed PBMCs
were incubated at 65°C for 10 min in PBS to obtain dead cells. Live
cells were added to dead cells at 1:1 ratio and 1 × 106 total (live and
dead) cells were dispensed in 96 U-bottomed well plates, pelleted
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and incubated with 1:2 serial dilutions of each of the vitality dye in
100 μl PBS. After 15 min in the dark at r.t, cells were washed once at
510g for 5 min in 200 μl PBS and resuspended in FACS wash (150 μl/
well). Cells stained with antibodies, tetramers, and vitality dyes
were immediately analyzed by FACSymphony A5 flow cytometer (BD
Biosciences). Cells acquired with serial dilution of reagents were
concatenated by FlowJo software and the dilution leading to the
best Stain Index was selected for multicolor staining.

Procedure for fluorochrome spillover compensation

To calculate the compensation matrix and to correct the reciprocal
spillover among fluorochromes with overlapping emission spectra,
anti-mouse (BD CompBead Cat. no. 552843) or anti-rat (BD
CompBead Cat. no. 552845) Ig-Kappa Comp Beads were stained
accordingly to the manufacturer’s conditions with the same mouse
Igk or rat Igk anti-human antibodies used in the panels and im-
mediately acquired using BD FACSDiva software (BD Biosciences
version 8.0.2). The compensation matrix was automatically calcu-
lated by BD FACSDiva software with some minimal manual cor-
rection by FlowJo version 7.4.2. Slightly different compensation
matrices have been applied to PBMCs and intratumoral T cells from
the same patients stained with the same antibody panels. This can
be due to different cell autofluorescence and fluorochrome in-
teraction with specific sample components. FACS Symphony A5 flow
cytometer performance was validated on a daily basis and the
acquisition conditions were standardized by rainbow calibration
particles (Spherotech Cat. no. RCP-30-5A) and CS&T beads (BD
Biosciences Cat. no. 655051) following the manufacturer’s in-
structions (Wang & Hoffman, 2017; Cossarizza et al, 2019).

Peripheral blood and hepatic tissue metastases collection and
processing

Peripheral blood samples, collected immediately before the sur-
gical resection and hepatic tissue sections were obtained from
Hepatobiliary Surgery at Ospedale San Raffaele with approval of
the local Ethics Committee and written informed consent of
donors in accordance with the Declaration of Helsinki. Licensed
pathologists confirmed the histologic diagnosis of Colon Carci-
noma derived Liver Metastases (CRC-LM) and collected sections
from tumor tissue and matched peritumoral tissue at the front
edge of the malignant lesion or normal liver tissue distal from the
malignant lesion.

Blood processing
PBMCs were isolated from healthy donors (buffy coats) by Ficoll
(Cytiva Cat. no. 17-1440-03) density separation and activated in vitro
with 1 μg/ml PHA (Remel–Invitrogen Cat. no. R30852801) in 24-well
plates (Nunc 142485) (2 × 106 cells in 2 ml complete RPMI 1640 Gibco
Cat. no. 61870036 + 10% FCS Euroclone cat ECS1102L/well) for 72 h at
37°C + 5% CO2.

Pre-surgical whole peripheral blood was processed by red blood
cell lysis by incubation in Red Blood Cell Lysis Solution (Miltenyi
Biotec Cat. no. 130-094-183), according to the manufacturer’s
instructions.

CRC-LM tissue processing
(1) CRC-LM samples (normal liver, peritumoral, and intratumoral

tissue sections) were collected immediately after surgical
resection in 15 ml Falcon tubes containing 3 ml of MACS
Tissue Storage Solution (Miltenyi Biotec Cat. no. 130-100-008)
to preserve cell viability and stored at 4°C for no more than
20 h.

(2) The tissue sections were dried by tapping on filter paper,
weighted, and divided in portions (up to 300mg each) which were
separately fragmented with scalpels into about 2-mm3 pieces in
presence of the tissue storage solution in a tissue culture dish.

(3) Each ≤ 300-mg tissue section was separately transferred to-
gether with the tissue storage solution into one gentleMACS C
Tube (Miltenyi Biotec Cat. no. 130-093-237) containing 4.7 ml
complete RPMI 1640 and kept on ice.

(4) Once all tissue samples were minced, Enzyme H + Enzyme A
(Tumor Dissociation Kit Human; Miltenyi Biotec Cat. no. 130-
095-929 as described by manufacturer) + Collagenase CLSPA
(22 U/ml final concentration) (Worthington Cat. no.
LS005273), or for comparison Collagenase IV (Sigma-Aldrich
Cat. no. C5138) (10 U/ml final concentration) or Dissociation
kit Human Miltenyi Enzyme R (Miltenyi Biotec Cat. no. 130-095-929
as described by manufacturer) were added.

(5) GentleMACS C Tubes and heaters were installed in the gen-
tleMACS Octo Dissociator (Miltenyi Biotec Cat. no. 130-096-427) and
the 37°C_Multi_A_01 program was selected to get the maximal
tumor-infiltrating viable lymphoid and myeloid cell number.

(6) The processed tissue samples were filtered through a 70-μm
cell strainer (Corning Cat. no. 352350) in a 50 ml Falcon tube and
RPMI 1640 medium was added up to 50 ml.

(7) After centrifugation (300g, 7 min), the cell suspension was in-
cubated in Red Blood Cell Lysis Solution (Miltenyi Biotec Cat.
no. 130-094-183), according to the manufacturer’s instructions;
finally, the cells were washed at 300g for 7 min, resuspended in
2 ml PBS (Euroclone Cat. no. ECB4004L), and counted on a
microscope.

(8) Cells were stained as described below with the following an-
tibodies: anti-CD3 APC-H7 (560275; BD), anti-CXCR3 PE-CF594
(353736; BioLegend), anti-CXCR5 BB515 (564625; BD), anti-CCR6
BB790 (BD custom product), anti-CCR7 BV711 (566602; BD), and
anti-CD25 BUV563 (612919; BD).

Cell staining procedure for T-cell surface antigens

PHA-activated (1 × 106 cells) PBMCs or leukocytes infiltrating CRC-LM
(0.5–1 × 106 tumor-infiltrating myeloid + lymphoid cells) were
stained with titrated (Table S2) Fixable Viability Stain 620 (FVS620)
(BD Biosciences Cat. no. 564996) in 100 μl PBS.

(1) After 15 min at r.t. in the dark, the cells were washed at 510g for 5
min with PBS, transferred in a 96 U-bottomed well plate (Greiner
Bio-One Cat. no. 650101) and incubated with Human Fc Block (BD
Biosciences Cat. no. 564220) 5 μl/sample in 10 μl FACS wash (PBS
+ 2% FCS, 0.2% NaN3 Sigma-Aldrich Cat. no. S2002) for 15 min at
r.t. in the dark.

(2) Without further washing, CD1d and MR1 cell titrated tetramers
(provided by NIH core tetramer facility hMR1 5-OP-RU 1.5 μg/ml,
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hCD1d PBS-57 1.1 μg/ml) were added in 50 μl BD Horizon Brilliant
Stain Buffer (BD Biosciences cat 566349)/sample and incubated
for 30 min on ice in the dark.

(3) After two washings at 510g for 5 min in 200 μl FACS wash, the
cells were incubated back with Human Fc Block 2.5 μl/sample in
10 μl FACS wash for 15 min at r.t., in the dark.

(4) mAbs were pre-mixed (as indicated in Table S1) in BD Horizon
Brilliant Stain Buffer 50 μl/sample. To discard possible mAb
aggregates, themAbmix was centrifuged at 14,000g for 1min at r.t.

After blocking described in 3. without washing, cells were incu-
batedwith themAbmix for 20min at r.t., washed three times as above
described, resuspended in FACS wash (200 μl/well) and immediately
acquired with FACSymphony A5 flow cytometer (BD Biosciences).

Data analysis

Manual gating for flow cytometry data analysis was performed by
FlowJo Software version 10.7.2 (BD Biosciences) on live cells after
the exclusion of cell doublets (Fig S5). HD analysis was performed
by cytoChain web application (Manfredi et al, 2021), briefly:

(1) To exclude signal fluctuations, data were cleaned by FlowAI
(Monaco et al, 2016) present among FlowJo plugins, but also
among cytoChain pre-analytical steps. The cleaned CRC-LM
T-cell population was gated on the basis of CD45+CD3+CD19−

expression from total lymphocytes excluding dead and ag-
gregated cells. All the compensated parameters expressed in
bi-exponential scale were exported by using “Export” FlowJo
option as .FCS file, including “Time” among the parameters.

(2) The exported .FCS file was uploaded into cytoChain and SPADE
correction (Qiu et al, 2011) was applied as a further pre-analytical
cleaning step to avoid multidimensional data scattering.

(3) Data were transformed by Archsin scale.
(4) If multiple .FCS files have to be analyzed, they can be down-

sampled by cytoChain to both reduce and/or balance the
number of events to be analyzed among different samples.

(5) We applied the dimensionality reduction process based on
t-SNE algorithm (Mahfouz et al, 2015) excluding parameters
associated to dead cell fluorescent dye, CD45, CD3 and CD19
markers. If multiple .FCS files are uploaded theymust bemerged
(concatenated) before the dimensionality reduction process.

(6) Clustering on the reported CRC-LM data set was run both with by
FlowSOM (Van Gassen et al, 2015) and FastPG (Bodenheimer et
al, 2020 Preprint) algorithms. In our case, we estimated that
FastPG outperformed FlowSOM.

(7) Final graphical output was released by cytoChain to visualize, as
described in the main text, the analysis results.

(8) We re-exported the FCS. file analyzed by cytoChain (the same
can be done for concatenated .FCS files) and uploaded back into
the FlowJo software for further visualization options and/or
phenotype clusterde-convolutionwith typical histogramsdescribing
the fluorescence intensity profile for each antigen of interest. The re-
exported files contain new dimensions describing the t-SNE bi-
dimensional distribution and the cluster identity. If a concatenate of
different samples is re-exported, single .FCS files can be retrieved
and associated to t-SNE maps or clusters.

(9) The cell frequency contained in each cluster can be compared
among different cell subpopulations or samples for statistical
evaluation.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101316.
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